

Workshop 2 "Creating the conditions for flexible, zero-emission, 100% electric city logistics"

6th April 2022

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101006943.

CERTH CENTRE FOR RESEARCH & TECHNOLOGY HELLAS

MODULAR AND FLEXIBLE SOLUTIONS FOR URBAN-SIZED ZERO-EMISSIONS LAST-MILE DELIVERY & SERVICES VEHICLES

Roadmap for modular	electric freight vehicles adoption: The URBANIZED approach	
10:30 am – 10:35 am	Welcome & scope of the workshop	
10:35 am – 10:45 am	- Introduction to URBANIZED: scope, objectives & innovation	IDIADA - Project
		Coordinator
	- URBANIZED vehicle: How technological challenges are being addressed	VUB
10:45 am – 11:00 am	URBANIZED Roadmap for modular electric freight vehicles adoption	CERTH
11:00 am – 11:55 am	Interactive session I & II	CE <mark>R</mark> TH,
		BA <mark>X</mark> &COMPANY
11:55 am – 12:00 pm	Closing	

The aim of this workshop

- Familiarize with other relevant roadmaps.
- Verify the goas & the objectives of the URBANIZED Roadmap... for flexible, zeroemission, 100% electric city logistics"
- Relate challenges identified in previous workshop with possible actions for alleviating the barriers and stimulating strong points of adoption.
- Getting your input for defining the content of a realistic Roadmap

HOW we will proceed..

Remember the strong points of the URBANIZED solution

Learn from Gaps identified through roadmaps' review and assessment

Capture your suggestions on measures and actions to be considered for the Road Map in the context of structural interactive session

Introduction

Scope of the Workshop

Discover the pathway to reach zero emission city logistics

1st Workshop:

More than 20 participants

Main vehicle characteristics:

- High efficiency with long-lasting battery system
- ICT platform and Energy Management System
- Modular cargo body
- Comfort cabin

Level of satisfaction from already

applied measures is quite low

Financial incentives are the most common practice

modUlaR and flexible solutions for urBAN-sized Zero-Emissions last-mile Delivery and services vehicles

Mission: develop and demonstrate the next generation of **modular vehicle architectures** for urbansized e-CVs at 3 levels: **vehicle systems** level, **vehicle** level, and **fleet** level

Key success factors

Market acceptance

- Users
 - Improved chassis/cabin safety (EuroNCAP 4 *)
 - Enhanced HMI features including thermal comfort
 - Integration of e-hand truck
- Fleet Operators & municipalities
 - 20% increase in **energy efficiency** from current vehicles New optimized powertrain components
 - Adoption of **swappable** multi-purpose modular **cargo bodies** for higher flexibility
 - Reduction of operational costs thanks to connectivity and big data algorithms.
 - Eco-driving and eco-comfort functions at vehicle level.
 - Eco-routing and eco-charging functions at fleet level

URBANIZED

MODULAR AND FLEXIBLE SOLUTIONS FOR URBAN-SIZED ZERO-EMISSIONS LAST-MILE DELIVERY & SERVICES VEHICLES

Frontal EuroNCAP

Technical challenges

MODULAR AND FLEXIBLE SOLUTIONS FOR URBAN-SIZED ZERO-EMISSIONS LAST-MILE DELIVERY & SERVICES VEHICLES

	At EV systems level	At EV vehicle level	At EV fleet level
For OEMs and suppliers	 No mass production, limiting economies of scale Trade-offs between mass production and customization 	 Low demand with low margins for niche markets in the N1 electric segment Trade-offs battery size, energy density, range, payload and charging strategy High costs of customisation 	• High acquisition costs for purpose- designed vehicles, harder for OEMs to sell in fleets
For end-users, fleet operators and municipalities	 Limited post-sale customisation Oversized components even for worst case scenario of operation which dramatically increase costs 	 Range sensitivity, compared to ICE counterparts Range anxiety and uncertainty in charging infrastructure availability Want to use the same vehicle for different purposes High acquisition costs Low safety perception Limited urban space: parking loading/unloading areas 	 High upfront investments with low utilisation rates (oversized fleets with no flexibility) Unbalanced requirements due to seasonal demand changes Lower the number of heavy and non-zero-emission vehicles Limit vehicle access and congestion Challenging last-mile delivery operations

URBANIZED delivering outputs in 3 dimensions:

1) High-performance e-drivetrain components (Multiphase PMSM, GaN-based inverter, GaN-based Onboard charger)

2) Interchangeable, plug & play cargo modules for different urban freight transport use case scenarios

3) Integrated energy and fleet management strategies using data, connectivity and learning algorithms

GaN half-bridge leg

URBANIZED

Galium Nitride

technology

Eco-EMS functions to be developed

Roadmap for modular electric freight vehicles adoption: The URBANIZED approach

Review and assessment of existing roadmaps

Methodological framework

Review and assessment of existing roadmaps towards the transition of city logistics

- Aspect of **policy** is included

Step 3

Roadmaps identified

Methodological framework

Review and assessment of existing roadmaps towards the transition of city logistics

Step 3

Roadmaps identified

EU level

POLIS, ALICE (2021). Guide for advancing

ERTRAC (2017). European Roadmap

Study On European Urban Transport

integration strategies and roadmap

ENCLOSE project (2014). Electric Fleets in

TRANSFORuM project (2014). Roadmap on

Electrification of Road Transport roadmap

TRT, Ricardo Energy & Environment (2016).

ALICE, ERTRAC (2015). Urban Freight Research

NOVELOG project (2018). NOVELOG D7.4. UFT

Emissions Logistics 2050

Mobility Roadmap

Roadmaps 2030

Urban Logistics

clean urban mobility

& Innovation Roadmap

towards zero-emission urban logistics by 2030 ALICE-ETP (2019). A framework and process for

the development of a Roadmap towards Zero-

ERTRAC, ERRAC, ALICE (2017). Integrated Urban

Global

National

Rotterdam in 2025

Roadmaps' assessment results: Statistics of identified roadmaps

Publication year

50% of the identified roadmaps were published in the **last 3 years**

The research **focuses on EU** level.

However, **41%** of the identified publications are **global, which refer to EU** as well.

Territorial coverage

+3 EU strategic documents included

as reference documents

Roadmaps' assessment results: Mapping the vision & objectives

Roadmaps' goals and objectives identified:

- GHG or CO2 reduction targets
- Phase-out targets of conventionally fueled vehicles
- Share of EVs to reach a specific percentage
- Establishment of Zero-Emission Zones

EU strategic documents

City logistics emits 6% of total GHG emissions from transport

According to projections by the European Environmental Agency, domestic transport emissions are expected to drop below their 1990 level in 2029 (from 2019-2019 -> 24.26% reduction of GHG emissions of transport \rightarrow expected 2.42% annual reduction for both mobility and city logistics)

The targets for 2030 seem to be quite ambitious.

Assuming that city logistics will still represent 6% of total transportation emissions, the visions of the roadmaps colored red will not be accomplished.

> **ZECL:** Zero Emission City Logistics **ZEL:** Zero Emission Logistics

ond emissions nom clansport						
		Urban transport 23%	City logistics 25% Urban transport			
	Total tra	Total transport emissions				
	Yearly percentage of CO2-eq. reduction	Vision	Roadmap			
	1.71%	-60% GHG by 2050 comp. to1990	Transport White Paper (2011)			
	2.37%	-43% GHG by 2050 comp. to 2005	European Commission (2014)			
	2.90%	-90% GHG 2019- 2050	European Green Deal (2019)			
	2.42%	-75% GHG by 2050 comp. to1990	Global Roadmap of Action Towards Sustainable Mobility (2019)			
	2.11%	-60% GHG by 2050 comp. to1990	Towards Road Freight Decarbonization (2018)			
	3.94%	-39% CO2 2017- 2030	European Roadmap Electrification of Road Transport roadmap (2017)			
	2.04	-60% GHG by 2050 comp. to1990	Outlook City Logistics (2017)			
	2.04	-60% GHG by 2050 comp. to1990	Commercial Vehicle of the Future (2017)			
	5.77%	-39% CO2 2017- 2030	The Future of Trucks (2017)			
	3.23%	ZEL 2019-2050	Roadmap towards Zero-Emissions Logistics 2050			
	3.23%	ZECL 2019-2050	Zero Emission Urban Freight (2019)			
_	11.11%	ZECL 2021-2030	Zero-emission urban logistics by 2030 (2021)			
	7.14%	ZECL 2016-2050	Study On European Urban Transport Roadmaps 2030			
	4.55%	7501 0010 0050	NOVELOG UFT integration			

ZECL 2018-2050

strategies and roadmap (2018)

CUC amigaiana from transport

Roadmaps' assessment results: Approach and content

Type of approach followed in the assessed roadmaps

Stepwise quidelines

Content items of the examined publications

Despite their practical configuration, milestones and checklists are not proposed by the majority of assessed roadmaps.

Most of the examined roadmaps, approximately 86%, include **policy** recommendations mostly for public stakeholders, while a number proposes technologies and innovative solutions towards the decarbonization of city logistics and not policy recommendations. 4 publications \rightarrow Innovation, technology and research

Only 6 out of 22 publications propose separate actions according to the type of stakeholder.

Challenges identified and policy actions to address them

Challenges & actions (1/2)

- Challenges identified are grouped in 4 categories:
 - Energy supply chain

Causes high cost of

Challenges & actions (2/2)

- **Energy supply chain**
- Logistics industry acceptance

Societal

acceptance

URBANIZED

Thank you!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101006943.

Emilia Romero